Casimir effect: running Newton constant or cosmological term
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We argue that the instability of Euclidean Einstein gravity is an indication that
the vacuum is non perturbative and contains a condensate of the metric tensor in a
manner reminiscent of Yang-Mills theories. As a simple step toward the character-
ization of such a vacuum the value of the one-loop effective action is computed for
Euclidean de Sitter spaces as a function of the curvature when the unstable confor-
mal modes are held fixed. Two phases are found, one where the curvature is large
and gravitons should be confined and another one which appears to be weakly cou-
pled and tends to be flat. The induced cosmological constant is positive or negative
in the strongly or weakly curved phase, respectively. The relevance of the Casimir

effect in understanding the UV sensitivity of gravity is pointed out.



I. EFFECTIVE POTENTIAL FOR THE CURVATURE

A. Formal expressions
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The one-loop approximation yields
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B. Gauge fixing and regularization
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C. Spin projection
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D. Spherical harmonics
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II. NUMERICAL RESULTS

A. Effective potential
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Quantum phase transition at % = x2, = A?/cy when the curvature where y(R) reaches
its minimum changes in discontinuous manner:

In the small cutoff phase, k2. << k%, energetically favored curvature:
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B. Running Newton constant
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IR Landau pole in the small cutoff phase at Ry, = Ryuin/2

All modes non perturbative and the theory strongly coupled unless R > R;.

Modes perturbative as R increased beyond the Landau pole, entire theory perturbative
for Rin < R.

Running Newton constant increasing function of R in the large cutoff phase
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C. Induced cosmological constant
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The induced cosmological constant positive/negative in the small/large cutoff phase;
higher order derivative term generated with coupling of the opposite sign as the cosmological

constant.

De Sitter background unstable in one-loop effective theory for A > cR
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1/(kpV—D? — 2)\) measure of amplitude of quantum fluctuations; qualitative claims for

strength of interactions recovered.



III. CASIMIR EFFECT IN A BOX
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FIG. 1: The effective potential |y(R)| as a function of R/k%, obtained with sharp cutoff. The lines
belong from left to right to A?/k% = 107°, 1074, 1073, 1072, 107}, 1, 10, 102, 10, 10* and 10°.

Since v(R) < 0 in the given range of curvature for A%/k% > 1 it is —y(R) which is shown for these

values of the cutoff.
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FIG. 2: The numerical and the fitted values for M*(A)/Incor%/A? are

uous line, respectively, as functions of A2/ I~€2B.
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